Highly Purified Human Extracellular Vesicles Produced by Stem Cells Alleviate Aging Cellular Phenotypes of Senescent Human Cells

Author:

Liu Senquan12,Mahairaki Vasiliki23,Bai Hao12,Ding Zheng12,Li Jiaxin23,Witwer Kenneth W.34,Cheng Linzhao12ORCID

Affiliation:

1. Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

2. Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

3. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

4. Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

Abstract

Abstract Extracellular vesicles (EVs), including exosomes and microvesicles, mediate intercellular communications and exert various biological activities via delivering unique cargos of functional molecules such as RNAs and proteins to recipient cells. Previous studies showed that EVs produced and secreted by human mesenchymal stem cells (MSCs) can substitute intact MSCs for tissue repair and regeneration. In this study, we examined properties and functions of EVs from human induced pluripotent stem cells (iPSCs) that can be cultured infinitely under a chemically defined medium free of any exogenous EVs. We collected and purified EVs secreted by human iPSCs and MSCs. Purified EVs produced by both stem cell types have similar sizes (∼150 nm in diameter), but human iPSCs produced 16-fold more EVs than MSCs. When highly purified iPSC-EVs were applied in culture to senescent MSCs that have elevated reactive oxygen species (ROS), human iPSC-EVs reduced cellular ROS levels and alleviated aging phenotypes of senescent MSCs. Our discovery reveals that EVs from human stem cells can alleviate cellular aging in culture, at least in part by delivering intracellular peroxiredoxin antioxidant enzymes. Stem Cells  2019;37:779–790

Funder

Maryland Stem Cell Research Fund

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3