Epimedium sagittatum Maxim ameliorates adriamycin‐induced nephropathy by restraining inflammation and apoptosis via the PI3K/AKT signaling pathway

Author:

Wang Ru12,Zeng Mengnan12,Zhang Beibei12,Zhang Qinqin12,Xie Shuangshuang12,Hu Yingbo1,Fan Ruyi1,Wang Mengya1,Yu Xiao1,Zhang Yuhan12,Zheng Xiaoke12ORCID,Feng Weisheng12

Affiliation:

1. School of Pharmacy Henan University of Chinese Medicine Zhengzhou China

2. The Engineering and Technology Center for Chinese Medicine Development of Henan Province Zhengzhou China

Abstract

AbstractBackgroundModern pharmacological studies show that Epimedium sagittatum Maxim (EPI) has antioxidant, antiapoptotic, anti‐inflammatory effects. However, the effects of EPI on adriamycin‐induced nephropathy are unclear.AimThe main purpose of this study is to investigate the effects of EPI on adriamycin‐induced nephropathy in rats.MethodsThe chemical composition of EPI was detected by high performance liquid chromatography. Network pharmacology was used to collect the effects of EPI on adriamycin nephropathy; renal histological changes, podocyte injury, inflammatory factors, oxidative stress levels, apoptosis levels, and the PI3K/AKT signaling pathway were examined. Moreover, analyze the effects of icariin (the representative component of EPI) on adriamycin‐induced apoptosis and PI3K/AKT signaling pathway of NRK‐52e cells.ResultsNetwork pharmacological results suggested that EPI may ameliorate adriamycin‐induced nephropathy by inhibiting inflammatory response and regulating the PI3K/AKT signaling pathway. The experimental results showed that EPI could improve pathological injury, renal function, podocyte injury, and inhibit inflammation, oxidative stress, apoptosis in adriamycin‐induced nephropathy rats through the PI3K/AKT signaling pathway. Furthermore, icariin inhibited adriamycin‐induced mitochondrial apoptosis in NRK‐52e cells.ConclusionThis study suggested that EPI ameliorates adriamycin‐induced nephropathy by reducing inflammation and apoptosis through the PI3K/AKT signaling pathway, icariin may be the pharmacodynamic substance basis for this effect.

Publisher

Wiley

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3