Convergence property of Nesterov‐accelerated adaptive moment estimation with safety helmet detection and classification in smart industry application

Author:

Jirakitpuwapat Wachirapong12ORCID,Dubey Premnath1,Prasertsuk Narachata1,Phanthong Chaowarit3,Tritham Chatchai4ORCID,Tritham Chattabhorn5,Chandharakool Somprattana6,Tharathep Chanvit7,Soontornpipit Pichitpong8

Affiliation:

1. National Electronics and Computer Technology Center National Science and Technology Development Agency Khlong Nueng Thailand

2. Faculty of Science, Energy and Environment King Mongkut's University of Technology North Bangkok (Rayong Campus) Rayong Thailand

3. Faculty of Education Muban Chombueng Rajabhat University Ratchaburi Thailand

4. College of Advanced Manufacturing Innovation King Mongkut's Institute of Technology Ladkrabang Bangkok Thailand

5. Department of Software Engineering Thammasat University Pathum Thani Thailand

6. Ministry of Public Health Pranangklao Hospital Nonthaburi Thailand

7. Ministry of Public Health Nonthaburi Thailand

8. Department of Biostatistics, Faculty of Public Health Mahidol University Bangkok Thailand

Abstract

We propose a technique for first‐order gradient‐based optimization of stochastic objective functions called Nesterov‐accelerated adaptive moment assessment, which makes use of dynamic evaluations of lower‐order moments. The adaptive moment assessment and the Nesterov acceleration gradient are combined. Consequently, it has perks, and this technique is convenient to use, numerically economical, memory‐light, and very well‐suited for challenges with massive amounts of information and characteristics. Additionally, we investigate the algorithm's convergence characteristics and propose a conservative constraint on the convergence rate. Finally, we employ this technique for the detection and classification of safety helmets.

Publisher

Wiley

Reference49 articles.

1. A.Krizhevsky I.Sutskever andG. E.Hinton Imagenet classification with deep convolutional neural networks Proceedings of the 25th International Conference on Neural Information Processing Systems ‐ Volume 1 NIPS'12 Curran Associates Inc. Red Hook NY USA 2012 pp.1097–1105.

2. Some methods of speeding up the convergence of iteration methods

3. A method for solving the convex programming problem with convergence rate O(1/k2)$$ O\left(1/k2\right) $$;Nesterov Y. E.;Dokl. Akad. Nauk SSSR,1983

4. Adaptive subgradient methods for online learning and stochastic optimization;Duchi J.;J. Mach. Learn. Res.,2011

5. Lecture 6.5‐rmsprop: divide the gradient by a running average of its recent magnitude;Tieleman T.;COURSERA: Neural Netw. Mach. Learn.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3