Subchronic toxicity evaluation of Huobahuagen extract and plasma metabolic profiling analysis combined with conventional pathology methods

Author:

Long Chengyan12ORCID,He Peilin12,Tu Ruxia12,Song Xiaoxian12,Li Henghua12,Huang Wentao12,Liu Jianyi12,Zhang Li12,Guo Yanlei12

Affiliation:

1. Chongqing Academy of Chinese Materia Medica Chongqing China

2. Safety Evaluation of Drugs Chongqing Academy of Chinese Materia Medica Chongqing China

Abstract

AbstractHuobahua, namely, Tripterygium hypoglaucum (Levl.) Hutch, known as a traditional Chinese herbal medicine, especially its underground parts, has been widely developed into several Tripterygium agents for the treatment of rheumatoid arthritis and other autoimmune diseases. It has sparked wide public concern about its safety, such as multi‐organ toxicity. However, the toxic characteristics and damage mechanism of Huobahuagen extract (HBHGE) remain unclear. In the present study, subchronic oral toxicity study of HBHGE (10.0 g crude drug/kg/day for 12 weeks) was performed in male rats. Hematological, serum biochemical, and histopathological parameters, urinalysis, and plasma metabolic profiling were assessed. The single‐dose subchronic toxicity results related to HBHGE exhibited obvious toxicity to the testis and epididymis of male rats. Furthermore, plasma metabolomics analysis suggested that a series of metabolic disorders were induced by oral administration of HBHGE, mainly focusing on amino acid (glutamate, phenylalanine, and tryptophan) metabolisms, pyrimidine metabolism, glutathione metabolism, and steroid hormone biosynthesis. Moreover, it appeared that serum testosterone in male rats treated with HBHGE for 12 weeks, decreased significantly, and was susceptible to the toxic effects of HBHGE. Taken together, conventional pathology and plasma metabolomics for preliminarily exploring subchronic toxicity and underlying mechanism can provide useful information about the reduction of toxic risks from HBHGE and new insights into the development of detoxification preparations.

Funder

Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission

Publisher

Wiley

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3