Development, application and evaluation of three novel TaqMan qPCR assays for phosphine resistance monitoring in major stored product pests Tribolium castaneum and Rhyzopertha dominica

Author:

Sakka Maria K.1ORCID,Mavridis Konstantinos2ORCID,Papapostolou Kyriaki Maria2,Riga Maria2ORCID,Vontas John23ORCID,Athanassiou Christos G.1

Affiliation:

1. Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment University of Thessaly Volos Greece

2. Institute of Molecular Biology and Biotechnology Foundation for Research and Technology‐Hellas Heraklion Greece

3. Pesticide Science Laboratory, Department of Crop Science Agricultural University of Athens Athens Greece

Abstract

AbstractBACKROUNDStored product protection from insect pests relies heavily on the use of phosphine. The most serious drawback of phosphine is the development of resistance in major stored product insects worldwide, including the red flour beetle, Tribolium castaneum (Herbst) and the lesser grain borer, Rhyzopertha dominica (F.). Two genetic loci are responsible for phosphine resistance: the rph1 (S349G mutation in the cyt‐b5‐r homolog) in T. castaneum and the rph2 (P45/49S mutation in the dihydrolipoamide dehydrogenase (dld) gene) in T. castaneum and R. dominica.RESULTSIn this study, we have developed and applied high‐throughput, practical and specific molecular diagnostics (TaqMan qPCR) for monitoring mutations S349G, P45S and P49S. In our pilot monitoring application, we have included phosphine‐resistant and susceptible populations from different parts of the world (USA, Australia, Brazil) and European strains from Greece and Serbia. Our results for the resistant T. castaneum showed a P45S mutant allele frequency (MAF) of 100% and 75.0% in the populations from Serbia and Brazil, respectively. Regarding the susceptible T. castaneum, P45S was detected in Greece (MAF = 62.5%) and was absent in Australia (MAF = 0.0%). Additionally, the S349G mutation was found to be fixed in all resistant populations, while it was also detected in susceptible ones (frequencies: 65.0% and 100.0%). The only case where both mutations were fixed (100%) was a resistant population from Serbia. In R. dominica, the P49S mutation was found only in the two resistant R. dominica populations from Serbia and Greece (50.0% and 100%) and was absent from the susceptible one from Greece; thus, P49S seems to be a satisfactory indicator for monitoring phosphine resistance.CONCLUSIONSOur P49S detection assay in R. dominica seems to be a viable option in this direction, yet its utilization needs additional large‐scale confirmatory work. The identification of additional resistance markers also should be prioritized. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Publisher

Wiley

Subject

Insect Science,Agronomy and Crop Science,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3