A flexible class of generalized joint frailty models for the analysis of survival endpoints

Author:

Chauvet Jocelyn123ORCID,Rondeau Virginie1ORCID

Affiliation:

1. INSERM U1219, Biostatistics Team University of Bordeaux Bordeaux France

2. ICES Research Center La Roche‐sur‐Yon France

3. Angevin Research Laboratory in Systems Engineering Angers France

Abstract

This article focuses on shared frailty models for correlated failure times, as well as joint frailty models for the simultaneous analysis of recurrent events (eg, appearance of new cancerous lesions or hospital readmissions) and a major terminal event (typically, death). As extensions of the Cox model, these joint models usually assume a frailty proportional hazards model for each of the recurrent and terminal event processes. In order to extend these models beyond the proportional hazards assumption, our proposal is to replace these proportional hazards models with generalized survival models, for which the survival function is modeled as a linear predictor through a link function. Depending on the link function considered, these can be reduced to proportional hazards, proportional odds, additive hazards, or probit models. We first consider a fully parametric framework for the time and covariate effects. For proportional and additive hazards models, our approach also allows the use of smooth functions for baseline hazard functions and time‐varying coefficients. The dependence between recurrent and terminal event processes is modeled by conditioning on a shared frailty acting differently on the two processes. Parameter estimates are provided using the maximum (penalized) likelihood method, implemented in the R package frailtypack (function GenfrailtyPenal). We perform simulation studies to assess the method, which is also illustrated on real datasets.

Funder

Institut National Du Cancer

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3