Homogenization and thermal processing reduce the concentration of extracellular vesicles in bovine milk

Author:

Colella Anna P.1,Prakash Anuradha1,Miklavcic John J.12ORCID

Affiliation:

1. Schmid College of Science and Technology Chapman University Orange California USA

2. School of Pharmacy Chapman University Irvine California USA

Abstract

AbstractExtracellular vesicles (EVs) in bovine milk confer beneficial physiologic effects to consumers. Industrial processing treatments may affect the amount or bioactivity of EVs intrinsic to bovine milk. We investigated how the content and concentration of EVs were affected by homogenization and thermal processing of raw bovine milk. Raw milk was processed by homogenization, low‐temperature (LT) heat, or pasteurization [high‐temperature short‐time (HTST) and ultra‐high‐temperature (UHT)] in a pilot processing facility. EVs were isolated from the raw and processed bovine milk using differential ultracentrifugation and quantified using a nanoparticle tracking analyzer. Bovine milk EVs were assessed for total miRNA and protein concentrations standardized to particle count using a fluorometric assay. There were 1.01 × 1010 (±3.30 × 109) EV particles per ml of bovine milk. All industrial processing treatments caused >60% decrease in EV concentration compared to the raw bovine milk. Homogenization and heat treatments independently and additively reduced the content of EVs in bovine milk. The averages of total miRNA/particle and total protein/particle concentrations were elevated threefold by low‐temperature heat‐processing treatment relative to HTST and UHT pasteurizations. The average diameter of EVs was reduced by 11%–16% by low temperature compared to raw milk (127 ± 13 nm). Homogenization and pasteurization indiscriminately reduce the EV concentration of bovine milk. Smaller EVs with higher protein content resist degradation when processing bovine milk at sub‐pasteurization temperature. This new foundational knowledge may contribute to food product development on the preservation of EVs in processed dairy products, including bovine milk‐based infant formulas that some newborns are dependent on for adequate growth and development.

Funder

National Institute of Food and Agriculture

Publisher

Wiley

Subject

Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3