Sampling design methods for making improved lake management decisions

Author:

Koski Vilja1ORCID,Eidsvik Jo2

Affiliation:

1. Department of Mathematics and Statistics University of Jyväskylä Jyväskylä Finland

2. Department of Mathematical Sciences NTNU Trondheim Norway

Abstract

AbstractThe ecological status of lakes is important for understanding an ecosystem's biodiversity as well as for service water quality and policies related to land use and agricultural run‐off. If the status is weak, then decisions about management alternatives need to be made. We assess the value of information of lake monitoring in Finland, where lakes are abundant. With reasonable ecological values and restoration costs, the value of information analysis can be compared with the survey's costs. Data are worth gathering if the expected value from the data exceeds the costs. From existing data, we specify a hierarchical Bayesian spatial logistic regression model for the ecological status of lakes. We then rely on functional approximations and Laplace approximations to get closed‐form expressions for the value of information of a sampling design. The case study contains thousands of lakes. The combinatorially difficult design problem is to wisely pick the right subset of lakes for data gathering. To solve this optimization problem, we study the performance of various heuristics: greedy forward algorithms, exchange algorithms and Bayesian optimization approaches. The value of information increases quickly when adding lakes to a small design but then flattens out. Good designs are usually composed of lakes that are difficult to manage, while also balancing a variety of covariates and geographic coverage. The designs achieved by forward selection are reasonably good, but we can outperform them with the more nuanced search algorithms. Statistical designs clearly outperform other designs selected according to simpler criteria.

Funder

Koneen Säätiö

Norges Forskningsråd

Emil Aaltosen Säätiö

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Subsample Selection Methods in the Lake Management;Journal of Agricultural, Biological and Environmental Statistics;2024-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3