Chemical exchange saturation transfer MRI detects myelin changes in cuprizone mouse model at 3T

Author:

Chen Zilin1,Huang Jianpan1,Lai Joseph H. C.1,Tse Kai‐Hei2,Xu Jiadi3ORCID,Chan Kannie W. Y.13456ORCID

Affiliation:

1. Department of Biomedical Engineering City University of Hong Kong Hong Kong, China

2. Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong, China

3. Russell H. Morgan Department of Radiology and Radiological Science The Johns Hopkins University School of Medicine Baltimore Maryland USA

4. Hong Kong Centre for Cerebro‐Cardiovascular Health Engineering (COCHE) Hong Kong, China

5. City University of Hong Kong Shenzhen Research Institute Shenzhen China

6. Tung Biomedical Science Centre City University of Hong Kong Hong Kong, China

Abstract

Chemical exchange saturation transfer (CEST) sensitively detects molecular alterations in the brain, such as relayed nuclear Overhauser effect (rNOE) CEST contrast at −3.5 ppm representing aliphatic protons in both lipids and proteins, and CEST contrast at 3.5 ppm correlating with amide proton in proteins. Myelin is rich in lipids and proteins, and therefore CEST can be explored as a biomarker for myelin pathology, which could contribute to the diagnosis and prognosis of multiple sclerosis (MS). In the current study, we investigate the specificity of aliphatic rNOE and the amide pool in myelin detection using the cuprizone (CPZ) mouse model, which recapitulates the demyelination and remyelination of MS. In this study, preclinical 3T MRI was performed in 19 male C57BL/6 mice. Mice in the normal control (NC) group (n = 9) were fed a normal diet for the whole course, while mice in the CPZ group (n = 10) were fed with CPZ for 10 weeks, followed by 4 weeks with a normal diet. The CEST contrast of rNOE (−3.5 ppm) and amide (3.5 ppm) in brain regions of the corpus callosum (CC) and the caudate putamen were compared. Statistical differences between the groups were calculated using two‐way ANOVA. We observed significantly decreased rNOE (NC: 4.85% ± 0.09%/s vs. CPZ: 3.88% ± 0.18%/s, p = 0.007) and amide pool (NC: 3.20% ± 0.10%/s vs. CPZ: 2.46% ± 0.16%/s, p = 0.02) in the CC after 8 weeks on CPZ diet (p < 0.05). Moreover, the rNOE in the CPZ group recovered to a level comparable with the NC group at week 14 (p = 0.39), while amide remained at a level as low as that for the NC group (p = 0.051). Significant rNOE and amide changes, validated by immunohistochemistry results for demyelination and remyelination, demonstrate the huge potential of CEST for revealing myelin pathology, which has implications for MS identification at the clinical field strength of 3T.

Funder

City University of Hong Kong

National Natural Science Foundation of China

Research Grants Council, University Grants Committee

Publisher

Wiley

Subject

Spectroscopy,Radiology, Nuclear Medicine and imaging,Molecular Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3