Affiliation:
1. College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
Abstract
AbstractIn this study, novel molecular structure encoding descriptors composed of feature encoding and one‐hot encoding was developed and then convolutional autoencoder was used to denoise based on the structure of ionic liquids (ILs). It could be used to predict the CO2 solubility in ILs at different temperatures and pressures, when combined with three different machine learning algorithms (multilayer perceptron [MLP], random forest [RF], and support vector machine [SVM]). Statistics of the prediction results show that the newly proposed molecular structure‐based coding has better regression prediction performance than the conventional molecular cheminformatics descriptors. SE‐MLP model with R2 of 0.9873 and mean square error of 0.0007 has the best performance in predicting the CO2 solubility in ILs. In addition, the relationship between features and dissolved CO2 capacity was analyzed through model interpretation to retrieve physical insights for the underlying system. This work provided a new predictive tool for enriching and refining data on CO2 solubility in ILs and for solving phase equilibrium problems.
Funder
National Natural Science Foundation of China
Subject
General Chemical Engineering,Environmental Engineering,Biotechnology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献