Affiliation:
1. Department of Industrial and Systems Engineering Virginia Tech Falls Church Virginia USA
Abstract
AbstractWe introduce and test the System Dynamics Bot, a computer program leveraging a large language model to automate the creation of causal loop diagrams from textual data. To evaluate its performance, we ensembled two distinct databases. The first dataset includes 20 causal loop diagrams and associated texts sourced from the system dynamics literature. The second dataset comprises responses from 30 participants to a vignette, along with causal loop diagrams coded by three system dynamics modelers. The bot uses textual data and successfully identifies approximately 60% of the links between variables and feedback loops in both datasets. This article outlines our approach, provides examples, and presents evaluation results. We discuss encountered challenges and implemented solutions in developing the System Dynamics Bot. The bot can facilitate extracting mental models from textual data and improve model‐building processes. Moreover, the two datasets can serve as a test‐bed for similar programs. © 2024 The Author(s). System Dynamics Review published by John Wiley & Sons Ltd on behalf of System Dynamics Society.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献