Affiliation:
1. Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering Zhejiang University Hangzhou People's Republic of China
2. Institute of Zhejiang University‐Quzhou Zhejiang University Quzhou People's Republic of China
Abstract
AbstractThe designability and ultrahigh stability of zirconium–organic frameworks make them attractive adsorbents for noble gases xenon (Xe) and krypton (Kr), but their Xe/Kr separation performance needs to be further enhanced. In this study, we rationally control the topology and porosity of zirconium–fumarate frameworks by simply changing the synthesis conditions, and successfully construct an adsorbent (named as MIP‐203‐F) with one‐dimensional pore instead of the original cage‐like fcu metal–organic framework MOF‐801. The Xe/Kr separation performance of MIP‐203‐F is thoroughly evaluated by isotherm measurements and breakthrough experiments, while the adsorption mechanism is elucidated in detail by Monte Carlo and density functional theory calculations. Due to the uniform pore with suitable size and abundant polarization groups, MIP‐203‐F can differentially polarize and recognize atomic Xe/Kr gases, and establishes a new record among zirconium–organic frameworks for the capture and separation of Xe/Kr.
Funder
National Natural Science Foundation of China
Subject
General Chemical Engineering,Environmental Engineering,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献