Adaptive neural network dynamic surface optimal saturation control for single‐phase grid‐connected photovoltaic systems

Author:

Zhang Hongyang1,Wang Tiechao1ORCID

Affiliation:

1. College of Electrical Engineering Liaoning University of Technology Jinzhou Liaoning China

Abstract

AbstractAn adaptive neural network (NN) based optimal saturation control scheme is investigated for single‐phase grid‐connected photovoltaic (PV) systems by incorporating dynamic surface control (DSC) and adaptive dynamic programming (ADP) based on the backstepping control design framework. For each backstepping step, a critic‐actor architecture is constructed via reinforcement learning (RL), and the PV system is optimized according to the cost function in the architecture. Due to the nonlinearity, it is difficult to solve the Hamilton–Jacobi–Bellman (HJB) equation. The neural networks (NNs) are employed to approximate the solution of the HJB equation such that the optimal virtual control and the actual controller are obtained. By considering control input symmetric saturation nonlinearity link, constraints on pulse width modulation (PWM) are ensured. On this basis, the combination of backstepping control design and dynamic surface technique is used to overcome the shortcomings of “differential explosion” and simplify calculations. Based on the Lyapunov method, the stability analysis proves that all signals of the closed‐loop PV systems are semiglobally uniformly ultimately bounded (SGUUB). Simulation experiments and comparative results are given to verify the efficacy of the studied control strategy.

Funder

Department of Education of Liaoning Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3