A comprehensive open‐access database of electron backscattering coefficients for energies ranging from 0.1 keV to 15 MeV

Author:

Akbari Fatemeh1

Affiliation:

1. Department of Radiation Oncology University of Toledo Health Science Campus Toledo Ohio USA

Abstract

AbstractPurposeThe characterization of electron backscattering is essential in medical physics for accurately assessing dose deposited around inhomogeneities where backscattering alters the spatial energy distribution pattern and for determining Monte‐Carlo code's ability to effectively describe electron scattering and does calculation in a target volume. Recent machine learning advances have provided physicists with powerful tools for effectively extracting information and trends from extensive experiment observations if sufficiently sizeable datasets are available for data mining. We report on the development of a publicly accessible database on electron backscattering coefficients for solid targets.Acquisition and validation methodsThe first database on electron‐solid interactions was assembled in 1995. Data for bulk materials, limited to normal incidence and energies up to 100 keV, were primarily focusing on electron microscopy. To accommodate broad high‐energy applications and include the most recent publications we have created a comprehensive database of electron backscattering coefficients, listed as a function of target atomic number and thickness, electron energy, and incidence angle. These additions resulted in a database of 3566 data points, compared to the previous database of 1430. The data collection includes only published experimental observations (no calculations or results fitting) with no attempt to judge their accuracy or quality. A limited number of data points were compared to recently published Monte‐Carlo results.Data format and usage notesThe presented database provides values of electron backscattering coefficients for 50 elements and 19 compounds at electron energies ranging from 0.1 keV to 15 MeV, presented in ASCII files. Each file contains the electron energy and backscattering coefficient with target thickness or electron incidence angle included where available, and the reference number shown in the last column. Additionally, the presented data were shown in the graphs for better visualization. The online database can be accessed from the website https://doi.org/10.5281/zenodo.7810951.Potential applicationsThe database provides the most up‐to‐date source of experimentally obtained electron backscattering coefficients that can be used in theoretical and MC calculations and modeling validations. The data availability is still very limited for many solids and almost non‐existent for compounds. Novel machine learning methods should be well adapted to predict these unknown values for various targets, thicknesses, energies, and incident angles utilizing the presented cleaned dataset.

Publisher

Wiley

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3