Metabolomic landscape of overall and common cancers in the UK Biobank: A prospective cohort study

Author:

Hu Chanchan1,Fan Yi2,Lin Zhifeng1,Xie Xiaoxu1,Huang Shaodan2,Hu Zhijian13ORCID

Affiliation:

1. Department of Epidemiology and Health Statistics, School of Public Health Fujian Medical University Fuzhou China

2. Department of Occupational and Environmental Health Sciences, School of Public Health Peking University Beijing China

3. Key Laboratory of Ministry of Education for Gastrointestinal Cancer Fujian Medical University Fuzhou China

Abstract

AbstractInformation about the NMR metabolomics landscape of overall, and common cancers is still limited. Based on a cohort of 83,290 participants from the UK Biobank, we used multivariate Cox regression to assess the associations between each of the 168 metabolites with the risks of overall cancer and 20 specific types of cancer. Then, we applied LASSO to identify important metabolites for overall cancer risk and obtained their associations using multivariate cox regression. We further conducted mediation analysis to evaluate the mediated role of metabolites in the effects of traditional factors on overall cancer risk. Finally, we included the 13 identified metabolites as predictors in prediction models, and compared the accuracies of our traditional models. We found that there were commonalities among the metabolic profiles of overall and specific types of cancer: the top 20 frequently identified metabolites for 20 specific types of cancer were all associated with overall cancer; most of the specific types of cancer had common identified metabolites. Meanwhile, the associations between the same metabolite with different types of cancer can vary based on the site of origin. We identified 13 metabolic biomarkers associated with overall cancer, and found that they mediated the effects of traditional factors. The accuracies of prediction models improved when we added 13 identified metabolites in models. This study is helpful to understand the metabolic mechanisms of overall and a wide range of cancers, and our results also indicate that NMR metabolites are potential biomarkers in cancer diagnosis and prevention.

Funder

Natural Science Foundation of Fujian Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3