Low‐temperature performance of Na‐ion batteries

Author:

Li Meng12,Zhuo Haoxiang3ORCID,Jing Qihang2,Gu Yang1,Liao Zhou1,Wang Kuan1,Hu Jiangtao4,Geng Dongsheng25,Sun Xueliang67ORCID,Xiao Biwei128ORCID

Affiliation:

1. GRINM (Guangdong) Research Institute for Advanced Materials and Technology Foshan Guangdong China

2. University of Science and Technology Beijing Beijing China

3. China Automotive Battery Research Institute Co., Ltd. Beijing China

4. Graphene Composite Research Center, College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong China

5. Nanjing University of Information Science and Technology Nanjing Jiangsu China

6. Department of Mechanical and Materials Engineering University of Western Ontario London Ontario Canada

7. Eastern Institute of Technology Ningbo Zhejiang China

8. General Research Institute for Nonferrous Metals Beijing China

Abstract

AbstractSodium‐ion batteries (NIBs) have become an ideal alternative to lithium‐ion batteries in the field of electrochemical energy storage due to their abundant raw materials and cost‐effectiveness. With the progress of human society, the requirements for energy storage systems in extreme environments, such as deep‐sea exploration, aerospace missions, and tunnel operations, have become more stringent. The comprehensive performance of NIBs at low temperatures (LTs) has also become an important consideration. Under LT conditions, challenges such as increased viscosity of electrolyte, abnormal growth of solid electrolyte interface, and poor contact between collector and electrode materials emerge. The aforementioned issues hinder the diffusion kinetics of sodium ions (Na+) at the electrode/electrolyte interface and cause rapid degradation of battery performance. Consequently, the optimization of electrolyte composition and cathode/anode materials becomes an effective approach to improve LT performance. This review discusses the conduction behavior and limiting factors of Na+ in both solid electrodes and liquid electrolytes at LT. Furthermore, it systematically reviews the recent research progress of LT NIBs from three aspects: cathode materials, anode materials, and electrolyte components. This review aims to provide a valuable reference for developing high‐performance LT NIBs.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3