CuMOF@Faujasite nanocomposite as a novel catalyst for hydrogen production

Author:

Said Mohamed I.1,Dardir Fatma M.2,Gabr Rabei M.1,Ahmed Ezzat A.2ORCID,Soliman Mamdouh F.2ORCID,Abukhadra Mostafa R.3ORCID

Affiliation:

1. Chemistry Department, Faculty of Science Assiut University Assiut Egypt

2. Geology Department, Faculty of Science Assiut University Assiut Egypt

3. Geology Department, Faculty of Science Beni‐Suef University Beni Suef Egypt

Abstract

Energy production is one of the most crucial issues presently attracting global attention. In this work, a CuMOF@Faujasite nanocomposite was synthesized and utilized as a novel efficient catalyst for hydrogen production. The produced composite was first characterized using X‐ray diffraction (XRD), Fourier‐ transform infrared (FT‐IR), thermogravimetric analysis (TGA), and differential scanning calorimetry. Surface properties were analyzed via nitrogen adsorption–desorption isotherms. All characterization results revealed the formation of a pure and well‐defined crystalline phase, with a high specific surface area (SBET) of 286 m2/g (SBET of Faujasite is 35 m2/g). Moreover, the morphology and compositional analysis of the nanocomposite were assured through the scanning (SEM) and transmission (TEM) electron microscope and X‐ray photospectroscopy (XPS). SEM and TEM images revealed sponge‐like spheres that are related to Faujasite besides small spherical particles related to CuBDC MOF. XPS analysis revealed a low content of CuMOF in the nanocomposite. The catalytic activity of the nanocomposite was tested for the dehydrogenation of NaBH4. The impact of NaBH4 concentration, weight of the catalyst, and the reaction temperature on NaBH4 hydrolysis was investigated. A hydrogen generation rate (HGR) of 484 mLmin−1 g−1 at 30 °C was achieved using 50 mg of the catalyst and 0.05 mol/l of NaBH4 owing to the high specific area and the selective active sites for such hydrolytic reaction. The kinetic analysis of the activity data indicates the first‐order behavior at low concentrations of NaBH4. Furthermore, at concentrations ≥0.065 mol L−1, zero‐order kinetics was predominant. The time needed for completion of the hydrolysis reaction was found to be decreased (~20 min) by increasing the catalyst mass as well as NaBH4 concentration or even by elevating the reaction temperature (~4 min at 60 °C). The activation energy was estimated; it was found to be 70.5 KJ mol−1. Ultimately, our catalyst showed a reasonable rate of hydrogen production, as compared to others reported earlier.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3