Highly active air electrode catalysts for Zn‐air batteries: Catalytic mechanism and active center from obfuscation to clearness

Author:

Deng Wenhui1,Song Zirui2,Jing Mingjun3,Wu Tianjing3ORCID,Li Wenzhang1,Zou Guoqiang1

Affiliation:

1. College of Chemistry and Chemical Engineering Central South University Changsha China

2. Department of Materials University of Oxford Oxford UK

3. National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education School of Chemistry, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, National Base for International Science & Technology Cooperation School of Chemistry Xiangtan University Xiangtan China

Abstract

AbstractCarbon‐based materials have been found to accelerate the sluggish kinetic reaction and are largely subject to the overall Zn‐air batteries (ZABs) property, while their full catalytic mechanism is still not excavated because of the indistinct internal structure and immature in‐situ technology. Up to now, systematic methods have been utilized to study and design promising high‐performance carbon‐based catalysts. To resolve the real active units and catalytic mechanism, developing molecular catalyst is a significant strategy. Herein, the review will initiate to briefly introduce the working principle and composition of ZABs. An important statement is correspondingly provided about the typical structure and catalytic mechanisms for the air cathode material. It also presents the tremendous endeavors on the catalytic performance and stability of carbon‐based material. Furthermore, combined with theoretical calculation, the self‐defined active sites are analyzed to understand the catalytic character, where the molecular catalyst is subsequently summarized and discussed through highlighting the unambiguous and controllable structure, in the hope of surfacing the optimum catalyst. Building on the fundamental understanding of carbon‐based and molecular catalysts, this review is expected to provide guidance and direction toward designing future mechanistic studies and ORR electrocatalysts.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3