Asymptotic behavior of spectral of Neumann-Poincaré operator in Helmholtz system

Author:

Fang Xiaoping12,Deng Youjun3ORCID,Chen Xiaohong42

Affiliation:

1. School of Mathematics and Statistics; Hunan University of Commerce; Changsha China

2. Institute of Big Data and Internet Innovation; Hunan University of Commerce; Changsha China

3. School of Mathematics and Statistics; Central South University; Changsha China

4. School of Business; Central South University; Changsha China

Funder

NSF grant of China

NSF grant of Hunan

Innovation-Driven Project of Central South University

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Engineering,General Mathematics

Reference27 articles.

1. Surface plasmon resonance of nanoparticles and applications in imaging;Ammari;Arch Ration Mech Anal,2016

2. Mathematical analysis of plasmonic nanoparticles: the scalar case;Ammari;Arch Ration Mech Anal,2017

3. Analysis of plasmon resonance on smooth domains using spectral properties of the Neumann-Poincare operator;Ando;J Math Anal Appl,2016

4. Plasmon resonance with finite frequencies: a validation of the quasi-static approximation for diametrically small inclusions;Ando;SIAM J Appl Math,2016

5. On spectral properties of Neuman-Poincaré operator on spheres and plasmonic resonances in 3D elastostatics;Deng;J Spectral Theory

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Elastostatics within multi-layer metamaterial structures and an algebraic framework for polariton resonances;ESAIM: Mathematical Modelling and Numerical Analysis;2024-07

2. Localized Resonances Beyond the Quasi-Static Approximation;Spectral Theory of Localized Resonances and Applications;2024

3. Introduction and Preliminaries;Spectral Theory of Localized Resonances and Applications;2024

4. On plasmon modes in multi‐layer structures;Mathematical Methods in the Applied Sciences;2023-07-17

5. Elastodynamical resonances and cloaking of negative material structures beyond quasistatic approximation;Studies in Applied Mathematics;2023-01-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3