A 2‐Anilidomethylpyridine Ligand Framework Showcasing Hydride Storage and Transfer Abilities in Its Aluminum Chemistry

Author:

Mandal Chhotan1,Kundu Abhishek2,Das Sanjay1,Adhikari Debashis2,Mukherjee Debabrata1ORCID

Affiliation:

1. Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata West Bengal 741246 India

2. Department of Chemical Sciences Indian Institute of Science Education and Research Mohali SAS Nagar Manauli 140306 Punjab India

Abstract

AbstractDearomatized 1,4‐dihydropyridyl motifs are significant in both chemistry and biology for their potential abilities to deliver the stored hydride, driven by rearomatization. Biological cofactors like nicotinamide adenine dinucleotide (NADH) and organic ‘hydride sources’ like Hantzsch esters are prime examples. An organoaluminum chemistry on a 2‐anilidomethylpyridine framework is reported, where such hydride storage and transfer abilities are displayed by the ligand's pyridyl unit. The pyridylmethylaniline proligand (NNLH) is simultaneously deprotonated and 1,4‐hydroaluminated by AlH3(NMe2Et) to [(NNLde)AlH(NMe2Et)] (1; NNLde=hydride‐inserted dearomatized version of NNL). A hydride abstraction by B(C6F5)3 rearomatizes the pyridyl moiety to give the cationic aluminum hydride [(NNL)AlH(NMe2Et)][HB(C6F5)3] (6). Notably, such chemical non‐innocence is priorly unseen in this established ligand class. The hydroalumination mechanism is investigated by isolating the intermediate [(NNL)AlH2] (2) and by control experiments, and is also analyzed by DFT calculation. The results advocate an intriguing ‘self‐promoting’ pathway, which underlines alane's Lewis acid/Brønsted base duality. NMe2Et carrying the alane also plays a crucial role. In contrast, the chemistry between NNLH and AlMe3 is much different, giving only [(NNL)AlMe2] (4) from the adduct [(NNLH)AlMe3] (3) by deprotonation but not a subsequent pyridyl dearomatization in the presence or absence of NMe2Et. This divergence is also justified by DFT analyses.

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3