Nitrogen‐Doped Starbons®: Methodology Development and Carbon Dioxide Capture Capability

Author:

Barker Ryan E.1,Brand Michael C.2,Clark James H.1,North Michael1ORCID

Affiliation:

1. Green Chemistry Centre of Excellence Department of Chemistry University of York YO10 5DD York UK

2. Department of Chemistry and Materials Innovation Factory and Leverhulme Research Centre for Functional Materials Design University of Liverpool L69 7ZD Liverpool UK

Abstract

AbstractFive nitrogen sources (glycine, β‐alanine, urea, melamine and nicotinamide) and three heating methods (thermal, monomodal microwave and multimodal microwave) are used to prepare nitrogen‐doped Starbons® derived from starch. The materials are initially produced at 250–300 °C (SNx300y), then heated in vacuo to 800 °C to produce nitrogen‐doped SNx800y’s. Melamine gives the highest nitrogen incorporation without destroying the Starbon® pore structure and the microwave heating methods give higher nitrogen incorporations than thermal heating. The carbon dioxide adsorption capacities of the nitrogen‐doped Starbons® determined gravimetrically, in many cases exceed those of S300 and S800. The carbon dioxide, nitrogen and methane adsorption isotherms of the most promising materials are measured volumetrically. Most of the nitrogen‐doped materials show higher carbon dioxide adsorption capacities than S800, but lower methane and nitrogen adsorption capacities. As a result, the nitrogen‐doped Starbons® exhibit significantly enhanced carbon dioxide versus nitrogen and methane versus nitrogen selectivities compared to S800.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3