Kinetic and Thermodynamic Control of Supramolecular Aggregation of Near Infrared Pyrrolopyrrole Cyanine Fluorophores Confined in Colloidal Nanoparticles

Author:

Zhang Yipeng1,Lou He1,Wang Mingfeng1ORCID

Affiliation:

1. School of Science and Engineering The Chinese University of Hong Kong Shenzhen 2001 Longxiang Avenue Shenzhen Guangdong 518172 China

Abstract

AbstractControl of the intermolecular aggregation of organic π‐conjugated molecules as chromophores is crucial for tuning their physical properties such as light absorption/emission, and energy and charge transfer. Lots of advances have been achieved in control of intermolecular aggregation of organic chromophores in solid states where an indefinitely large number of molecules are involved. However, much less understanding has been gained at a mesoscale of aggregates formed by well‐defined organization of a deterministic number of chromophores, which has been realized in natural photosynthetic systems but still remains rare in manmade materials. Here, we report both the kinetic and the thermodynamic control of the supramolecular aggregation of a near‐infrared cyanine dye, PPcy, and its derivatives confined in colloidal nanoparticles stabilized by surfactants in aqueous media. Our results demonstrate that both the aggregation number, the aggregation state and the optical properties of the PPcy chromophores are controllable through optimization of the alkyl and polymer chains tethered from PPcy, the effective concentration of the chromophore inside each particle, and the surfactants utilized to stabilize the colloids in water.

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3