Affiliation:
1. Nano-Science Center & Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Ø Denmark
2. Division of Chemical Physics Department of Chemistry Lund University Lund Sweden
Abstract
AbstractFluorescent probes based on photoinduced electron transfer (PET) quenching of long lifetime triangulenium fluorophores have found multiple applications. For such probes a successful design relies on the right balance between the rate of PET quenching and fluorescence. In a series of ADOTA (A) and DAOTA (D) triangulenium fluorophores appended with aniline‐like quencher moieties, we have investigated the rate of quenching and its relation to thermodynamic driving force, distance, and conjugation within the quencher moiety. Three different quenchers, a short (1), a long (2), and a long twisted (3), 4‐aminophenyl, 4’‐aminobiphenyl, and 2,2’‐dimethyl‐4’‐aminobiphenyl, respectively were investigated. Steady‐state spectroscopy and electrochemistry confirms that the quencher moieties are electronically decoupled from the dyes and have similar oxidation potentials and thus driving force for PET quenching, irrespectively of their different length and conjugation. Time‐resolved fluorescence measurement was used to measure the fast PET quenching, with rate constant kPET ranging from >4×1011 to 2×109 s−1. Interestingly, PET quenching is equally efficient/fast from 1 and 2, even with increase in distance between the donor and the acceptor. However, when twisting the biphenyl in 3, a 20‐fold decrease in quenching is found. Even with this decrease in kPET, the quenching in 3 A/D is still highly efficient, with nearly 99 % quenching. The study show that long lifetime fluorophores can be efficiently switched even by relatively slow PET processes and that PET quencher moieties can be removed far from the fluorophore if conjugated linkers are applied.
Subject
General Chemistry,Catalysis,Organic Chemistry