The Structure of Carbon Dioxide at the Air‐Water Interface and its Chemical Implications

Author:

Martins‐Costa Marilia T. C.1,Ruiz‐López Manuel F.1

Affiliation:

1. Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019 University of Lorraine, CNRS BP 70239, 54506 Vandoeuvre-lès-Nancy France

Abstract

AbstractThe efficient reduction of CO2 into valuable products is a challenging task in an international context marked by the climate change crisis and the need to move away from fossil fuels. Recently, the use of water microdroplets has emerged as an interesting reaction media where many redox processes which do not occur in conventional solutions take place spontaneously. Indeed, several experimental studies in microdroplets have already been devoted to study the reduction of CO2 with promising results. The increased reactivity in microdroplets is thought to be linked to unique electrostatic solvation effects at the air‐water interface. In the present work, we report a theoretical investigation on this issue for CO2 using first‐principles molecular dynamics simulations. We show that CO2 is stabilized at the interface, where it can accumulate, and that compared to bulk water solution, its electron capture ability is larger. Our results suggest that reduction of CO2 might be easier in interface‐rich systems such as water microdroplets, which is in line with early experimental data and indicate directions for future laboratory studies. The effect of other relevant factors which could play a role in CO2 reduction potential is discussed.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3