Microwave‐Assisted One Pot Cascade Conversion of Furfural to γ‐Valerolactone over Sc(OTf)3

Author:

Li Fukun1ORCID,Yang Ronghe1,Tian Zheng2,Du Ziting1,Dai Jinhang1,Wang Xingmin1,Li Ning1,Zhang Jie1

Affiliation:

1. College of Environment and Resources Chongqing Technology and Business University Chongqing 400067 P. R. China

2. Dencare (Chongqing) Oral Care Co. Ltd Chongqing 400067 P. R. China

Abstract

Abstractγ‐Valerolactone (GVL) is considered as a star biochemical which can be used as a green solvent, fuel additive and versatile organic intermediate. In this study, metal triflate (M(OTf)n) was utilized as the catalyst for one‐pot transformation of furfural (FF) to GVL in alcohol media under microwave irradiation. Alcohol plays multiple functions including solvent, hydrogen donor and alcoholysis reagent in this cascade reaction process. And process efficiency of GVL production from FF upgrading is strongly related to the effective charge density of selected catalyst and the reduction potential of selected alcohol. Complex (OTf)n‐M−O(H)R, presenting both Brønsted acid and Lewis acid, is the real catalytic active species in this cascade reaction process. Among various catalysts, Sc(OTf)3 exhibited the best catalytic activity for GVL production. Various reaction parameters including the Sc(OTf)3 amount, reaction temperature and time were optimized by the response surface methodology with the central composite design (RSM‐CCD). Up to 81.2 % GVL yield and 100 % FF conversion were achieved at 143.9 °C after 8.1 h in the presence of 0.16 mmol catalyst. This catalyst exhibits high reusability and can be regenerated by oxidative degradation of humins. In addition, a plausible cascade reaction network was proposed based on the distribution of product.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Chongqing Municipal Education Commission

Chongqing Technology and Business University

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3