Static Binding and Dynamic Transporting‐Based Design of Specific Ring‐Chain‐Ring Acetylcholinesterase Inhibitor: From Galantamine to Natural Product

Author:

Zhang Zhiyang1,Lv Jianwu2,Wang Yu1,Yu Hongli1,Guo Baolin1,Zhai Jihang1,Wang Chaojie1,Zhao Yuan1ORCID,Fan Fangfang3,Luo Wen1

Affiliation:

1. The Key Laboratory of Natural Medicine and Immuno-Engineering Henan University Kaifeng 475004 (P. R. China

2. Shandong University National Glycoengineering Research Center Qingdao 266237 P. R. China

3. Zhejiang University of Science and Technology School of Biological and Chemical Engineering Hangzhou 310023 P. R. China

Abstract

AbstractAcetylcholinesterase (AChE) is a key target for the current symptomatic treatment of Alzheimer's disease, and galantamine is a clinical anticholinesterase drug with transiently acting characteristic and good selectivity for AChE. The present theoretical‐experimental work improves the drug‘s residence time without reducing the inhibition effect, thus providing a crucial breakthrough for modifying the inhibitor of AChE with better kinetic behavior. The static binding and dynamic delivery properties acquired from atomic view reveal that the galantamine simply occupies a catalytic anionic site, and its release from AChE needs only ∼8.6 kcal/mol. Both of these may cause the short residence time of galantamine. The hotspots and most favorable transport mechanism are identified, and the hydrogen bond and aromatic stacking interactions are observed to play crucial roles for galantamine binding and release in AChE. The typical peripheral anionic site arisen at the delivery process would provide another key occupation to enhance the anti‐release ability for inhibitors. The compound with “specific‐ring‐chain‐ring” framework with detailed beneficial modification scheme is summarized, which may improve the residence time of the inhibitor in AChE. The thermodynamic and dynamic properties of galantamine derivatives are also studied. Based on dictamnine, a natural alkaloid, two novel eligible derivatives are designed, synthesized and evaluated, which verifies our prediction. Multiple computational approaches and experimental combinations probably provide a train of thought from both static and dynamic views to modify or design appropriate inhibitors on the basis of specific binding and transportation features.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3