Affiliation:
1. Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Shantou University Shantou Guangdong 515063 China
Abstract
AbstractThe rapid development of narrow‐bandgap nonfullerene acceptors (NFAs) has boosted the efficiency of organic solar cells (OSCs) over 19 %. The new features of high‐performance NFAs, such as visible‐NIR light absorption, moderate the highest occupied molecular orbitals (HOMO), and high crystallinity, require polymer donors with matching physical properties. This emphasizes the importance of methods that can effectively tune the physical properties of polymers. Owning to very small atom size and strongest electronegativity, the fluorination has been proved the most efficient strategy to regulate the physical properties of polymer donors, including frontier energy level, absorption coefficient, dielectric constant, crystallinity and charge transport. Owing to the success of fluorination strategy, the vast majority of high‐performance polymer donors possess one or more fluorine atoms. In this review, the fluorination synthetic methods, the synthetic route of well‐known fluorinated building blocks, the fluorinated polymers which are categorized by the type of donor or acceptor units, and the relationships between the polymer structures, properties, and photovoltaic performances are comprehensively surveyed. We hope this review could provide the readers a deeper insight into fluorination strategy and lay a strong foundation for future innovation of fluorinated polymers.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Department of Education of Guangdong Province
Subject
General Chemistry,Catalysis,Organic Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献