Cryogenic Ion Fluorescence Spectroscopy: FRET in Rhodamine Homodimers and Heterodimers

Author:

Kjær Christina1ORCID,Vu‐Phung André1,Toft Lindkvist Thomas1ORCID,Langeland Jeppe1ORCID,Brøndsted Nielsen Steen1ORCID

Affiliation:

1. Department of Physics and Astronomy Aarhus University Ny Munkegade 120 8000 Aarhus C Denmark

Abstract

AbstractThe internal electronic communication between two or more light‐absorbers is fundamental for energy‐transport processes, a field of large current interest. Here the intrinsic photophysics of homo‐ and heterodimers of rhodamine cations were studied where just two methylene units bridge the dyes. Gas‐phase experiments were done on frozen molecular ions at cryogenic temperatures using the newly built LUNA2 mass spectroscopy setup in Aarhus. Both absorption (from fluorescence excitation) and dispersed‐fluorescence spectra were measured. In the gas phase, there is no dielectric screening from solvent molecules, and the effect of charges on transition energies is maximum. Indeed, bands are redshifted compared to those of monomer dyes due to the electric field that each dye senses from the other in a dimer. Importantly, also, as two chemically identical dyes in a homodimer do not experience the same field along the long axis, each dye has separate absorption. At low temperatures, it is therefore possible to selectively excite one dye. Fluorescence is dominantly from the dye with the lowest transition energy no matter which dye is photoexcited. Hence this work unequivocally demonstrates Förster Resonance Energy Transfer even in homodimers where one dye acts as donor and the other as acceptor.

Funder

Novo Nordisk Fonden

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3