Tandem Four‐Component Reaction to Access Fused Polycycles Exhibiting Aggregation‐Enhanced Through‐Space Charge Transfer Emission

Author:

Meng Xin1,Zhang Qing1,Lang Xuteng1,Zhang Ensheng1,Liu Yilin2,Cao Ziping1ORCID

Affiliation:

1. Shandong Key Laboratory of Life-Organic Analysis and School of Chemistry and Chemical Engineering Qufu Normal University Qufu, Shandong 273165 P. R. China

2. Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material Institute of Organic Synthesis Huaihua University Huaihua, Hunan 418000 P. R. China

Abstract

AbstractRapid construction of new fluorescence emitters is essential in advancing synthetic luminescent materials. This study illustrated a piperidine‐promoted reaction of chiral dialdehyde with benzoylacetonitrile and malonitrile, leading to the formation of the 6/6/7 fused cyclic product in good yield. The proposed reaction mechanism involves a dual condensation/cyclization process, achieving the formation of up to six bonds for fused polycycles. The single crystal structure analysis revealed that the fused cyclic skeleton contains face‐to‐face naphthyl and cyanoalkenyl motifs, which act as the electronic donor and acceptor, respectively, potentially resulting in through‐space charge transfer (TSCT) emission. While the TSCT emissions were weak in solution, a notable increase in luminescence intensity was observed upon aggregation, indicating bright fluorescent light. A series of theoretical analyses further supported the possibility of spatial electronic communication based on frontier molecular orbitals, the distance of charge transfer, and reduced density gradient analysis. This work not only provides guidance for the one‐step synthesis of complex polycycles, but also offers valuable insights into the design of aggregation‐enhanced TSCT emission materials.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3