Enhancing Intramolecular Ferromagnetic Coupling in Tetrathiafulvalene–Nitronyl Nitroxide‐Based Compounds through Spin Polarization Mechanism

Author:

Franquesa‐Viñas Pau1,Ribas‐Ariño Jordi1ORCID,Santiago Raul1ORCID,Deumal Mercè1ORCID

Affiliation:

1. Departament de Ciència de Materials i Química Física & IQTCUB, Facultat de Química, Universitat de Barcelona Martí i Franquès 1 E-08028 Barcelona

Abstract

AbstractSpin‐polarized donor radicals based on tetrathiafulvalene (TTF) derivatives and nitronyl nitroxide (NN) radicals in which one‐electron oxidation involves the HOMO instead of the SOMO are well known for exhibiting magnetoresistance. In particular, BTBN consists of one dibromo‐TTF and one NN radical, which are linked by a phenyl coupler group. One of the key factors driving magnetoresistance is the presence of intramolecular ferromagnetic (FM) coupling between the oxidized π‐donor (TTF+⋅, D unit) and NN (R unit). Here, a theoretical study is carried out to assess suitable candidates with enhanced FM coupling with respect BTBN, which is thus used as a reference. The study is conducted via in silico chemical modification of the substituents of the BTBN basic functional units (D and R radicals, C coupler) to benefit from the spin polarization mechanism to boost the intramolecular FM coupling, aiming to distort the BTBN radical arrangement within the molecular crystal as little as possible, in the event the material can be synthesized. NICSiso(1) and Wiberg's Bond Order are analyzed to further assist in identifying promising potential candidates, since the decrease in aromaticity is expected to enhance the diradical character and give rise to a larger magnetic coupling value. The most favorable diradical building block to replace the BTBN moiety results from using a hydroxyl‐ethylene (−(H)C=C(OH)−) as a coupler preserving BTBN original radicals, namely, NN and TTF+⋅ units. This study aims at illustrating the feasibility of improving the intramolecular FM interaction between radical moieties, which is fully realized, as a first step towards the synthesis of new materials with (possibly) enhanced magnetoresistance properties.

Funder

Ministerio de Economía y Competitividad

Agència de Gestió d'Ajuts Universitaris i de Recerca

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3