Fluorinated Benzimidazole‐Linked Highly Conjugated Polymer Enabling Covalent Polysulfide Anchoring for Stable Sulfur Batteries

Author:

Haldar Sattwick1ORCID,Khan Arafat H.2ORCID,De Ankita1ORCID,Reichmayr Fanny3,Morag Ahiud45ORCID,Yu Minghao4ORCID,Schneemann Andreas1ORCID,Kaskel Stefan16ORCID

Affiliation:

1. Chair of Inorganic Chemistry I Technische Universität Dresden 01069 Dresden Germany

2. Chair of Bioanalytical Chemistry Technische Universität Dresden 01069 Dresden Germany

3. Chair of Electrochemistry Technische Universität Dresden 01069 Dresden Germany

4. Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01069 Dresden Germany

5. Max Planck Institute of Microstructure Physics Weinberg 2 06120 Halle Germany

6. Fraunhofer Institute for Material and Beam Technology (IWS) Winterbergstraße 28 01277 Dresden Germany

Abstract

AbstractSulfur is one of the most abundant and economical elements in the p‐block family and highly redox active, potentially utilizable as a charge‐storing electrode with high theoretical capacities. However, its inherent good solubility in many electrolytes inhibits its accessibility as an electrode material in typical metal‐sulfur batteries. In this work, the synthetically designed fluorinated porous polymer, when treated with elemental sulfur through a well‐known nucleophilic aromatic substitution mechanism (SNAr), allows for the covalent integration of polysulfides into a highly conjugated benzimidazole polymer by replacing the fluorine atoms. Chemically robust benzimidazole linkages allow such harsh post‐synthetic treatment and facilitate the electronic activation of the anchored polysulfides for redox reactions under applied potential. The electrode amalgamated with sulfurized polymer mitigates the so‐called polysulfide shuttle effect in the lithium‐sulfur (Li−S) battery and also enables a reversible, more environmentally friendly, and more economical aluminum‐sulfur (Al−S) battery that is configured with mostly p‐block elements as cathode, anode, and electrolytes. The improved cycling stabilities and reduction of the overpotential in both cases pave the way for future sustainable energy storage solutions.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3