Affiliation:
1. University of Zurich Department of Chemistry Winterthurerstrasse 190 CH-8057 Zurich Switzerland
2. Klinik für Kleintierchirurgie Vetsuisse-Fakultät University of Zurich Wintherturerstrasse 260 CH-8057 Zurich Switzerland
Abstract
AbstractRadioimmunotherapy (RIT) is a promising alternative to conventional treatment options. Here, we present experimental work on the synthesis, radiochemistry, and in vivo performance of a lanthanoid‐selective nonadentate bispidine ligand suitable for 177Lu3+ ion complexation. The ligand (bisp,1) was derivatised with a photoactivatable aryl azide (ArN3) group as a bioconjugation handle for light‐induced labelling of proteins. Quantitative radiosynthesis of [177Lu]Lu‐1+ was accomplished in 10 minutes at 40 °C. Subsequent incubation of [177Lu]Lu‐1+ with trastuzumab, followed by irradiation with light at 365 nm for 15 min, at room temperature and pH 8.0–8.3, gave the radiolabelled mAb, [177Lu]Lu‐1‐azepin‐trastuzumab ([177Lu]Lu‐1‐mAb) in a decay‐corrected radiochemical yield of 14 %, and radiochemical purity (RCP)>90 %. Stability studies and cellular binding assays in vitro using the SK‐OV‐3 human ovarian cancer cells confirmed that [177Lu]Lu‐1‐mAb remained biological active and displayed specific binding to HER2/neu. Experiments in immunocompromised female athymic nude mice bearing subcutaneous xenograft models of SK‐OV‐3 tumours revealed significantly higher tumour uptake in the normal group compared with the control block group (29.8±11.4 %ID g−1 vs. 14.8±6.1 %ID g−1, respectively; P‐value=0.037). The data indicate that bispidine‐based ligand systems are suitable starting points for constructing novel, high‐denticity chelators for specific complexation of larger radiotheranostic metal ion nuclides.
Funder
Horizon 2020 Framework Programme
Subject
General Chemistry,Catalysis,Organic Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献