Affiliation:
1. Institute for Energy Research Jiangsu University 301 Xuefu Road Zhenjiang 212013 PR China
2. Department of Applied Chemistry, Faculty of Chemistry Urmia University Urmia 5756151818 Iran
Abstract
AbstractPolymer electrolyte membrane fuel cells (PEMFCs) represent a promising clean energy solution. However, their widespread adoption faces hurdles related to component optimization. This review explores the pivotal role of ionic liquids (ILs) in enhancing PEMFC performance, focusing on their role in polymer electrolyte membranes, catalyst modification, and other components. By addressing key obstacles, including proton conductivity, catalyst stability, and fuel crossover, ILs provide a pathway towards the widespread commercialization of PEMFCs. In the realm of PEMFC membranes, ILs have shown great potential in improving proton conductivity, mechanical strength, and thermal stability. Additionally, the utilization of ILs as catalyst modifiers has shown promise in enhancing the electrocatalytic activity of electrodes by serving as an effective stabilizer to promote the dispersion of metal nanoparticles, and reduce their agglomeration, thereby augmenting catalytic performance. Furthermore, ILs can be tailored to optimize the catalyst‐support interaction, ultimately enhancing the overall fuel cell efficiency. Their unique properties, such as high oxygen solubility and low volatility, offer advantages in terms of reducing mass transport and water management issues. This review not only underscores the promising advancements achieved thus far but also outlines the challenges that must be addressed to unlock the full potential of ILs in PEMFC technology, offering a valuable resource for researchers and engineers working toward the realization of efficient and durable PEMFCs.
Funder
Ministry of Science and Technology of the People's Republic of China
Subject
General Chemistry,Catalysis,Organic Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献