Solid‐State [4+4] Cycloaddition and Cycloreversion with Use of Unpaired Hydrogen‐Bond Donors to Achieve Solvatomorphism and Stabilization

Author:

George Gary C.1ORCID,Hutchins Kristin M.1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry Texas Tech University Lubbock TX 79409 USA

Abstract

AbstractThe crystal structure of a commercially available anthracene derivative, anthracene‐9‐thiocarboxamide, is reported here for the first time. The compound undergoes a [4+4] cycloaddition in the solid state to afford facile synthesis of the cycloadduct (CA). The cycloaddition is also reversible in the solid state using heat or mechanical force. Due to the presence of unpaired, strong hydrogen‐bond donor atoms on the CA, significant solvatomorphism is achieved, and components of the solvatomorphs self‐assemble into four different classes of supramolecular structures. The CA readily crystallizes with a variety of structurally‐diverse solvents including those containing oxygen‐, nitrogen‐, or pi‐acceptors. Some of the solvents the CA crystallized with include thiophene, benzene, and the three xylene isomers; thus, the CA was employed in industrially‐relevant solvent separation. However, in competition studies, the CA did not exhibit selectivity. Lastly, it is demonstrated that the CA crystallizes with vinyl‐containing monomers and is currently the only compound that crystallizes with both widely used monomers 4‐vinylpyridine and styrene. Solid‐state complexation of the CA with the monomers affords over a 50 °C increase in the monomer's thermal stabilities. The strategy of designing molecules with unused donors can be applied to achieve separations or volatile liquid stabilization.

Funder

National Science Foundation

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3