Using Solution History to Control Hydrogel Properties of a Perylene Bisimide

Author:

Ginesi Rebecca E.1ORCID,Murray Nicholas R.1ORCID,Dalgliesh Robert M.2ORCID,Doutch James2ORCID,Draper Emily R.1ORCID

Affiliation:

1. School of Chemistry University of Glasgow Glasgow, UK G12 8QQ UK

2. ISIS Rutherford Appleton Laboratory Chilton Oxfordshire OX11 0QX UK

Abstract

AbstractpH dependence on water soluble aggregates is well‐known in the field of low molecular weight gelators (LMWGs), with different aggregates sometimes having very different properties depending on their final pH. This aggregation determines their applications and performance. Here, we investigate the pH dependence of perylene bisimide gels; initially solutions are formed at a high pH and gels form as the pH is decreased. We find it is not only the final pH but also the starting pH that can impact the resulting gel. We use small angle neutron scattering (SANS), rheology,1H NMR spectroscopy and absorption spectroscopy to examine the effect of starting pH on gelation kinetics and final gel properties. Adjusting the solution from pH 9 (where there are few or no aggregates) to pH 6 results in the formation of different worm‐like micelles than the ones directly formed at pH 6, leading to again gels with different mechanical properties. This work highlights the importance of controlling the pH of solutions before gelation, but also opens up more possible morphologies and therefore more properties from the same molecule.

Funder

UK Research and Innovation

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3