Influence of Polymer Side Chain Size and Backbone Length on the Self‐Assembly of Supramolecular Polymer Bottlebrushes

Author:

Ulrich Hans F.12,Gruschwitz Franka V.12,Klein Tobias12,Ziegenbalg Nicole12,Anh Doan Thi Ngoc3,Fujii Shota3,Hoeppener Stephanie12ORCID,Sakurai Kazuo3ORCID,Brendel Johannes C.124ORCID

Affiliation:

1. Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Humboldtstraße 10 07743 Jena Germany

2. Jena Center for Soft Matter (JCSM) Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany

3. Department of Chemistry and Biochemistry University of Kitakyushu 1-1 Hibikino, Wakamatsu-ku Kitakyushu Fukuoka 808-0135 Japan

4. Current address Macromolecular Chemistry I University of Bayreuth Universitätsstr. 30 95447 Bayreuth

Abstract

AbstractHydrogen bonds are a versatile tool for creating fibrous, bottlebrush‐like assemblies of polymeric building blocks. However, a delicate balance of forces exists between the steric repulsion of the polymer chains and these directed supramolecular forces. In this work we have systematically investigated the influence of structural parameters of the attached polymers on the assembly behaviour of benzene trisurea (BTU) and benzene tris(phenylalanine) (BTP) conjugates in water. Polymers with increasing main chain lengths and different side chain sizes were prepared by reversible addition‐fragmentation chain‐transfer (RAFT) polymerization of hydroxyethyl acrylate (HEA), tri(ethylene glycol) methyl ether acrylate (TEGA) and oligo(ethylene glycol) methyl ether acrylate (OEGA). The resulting structures were analyzed using small angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM). Both BTU and BTP formed fibres with PHEA attached, but a transition to spherical morphologies was observed at degrees of polymerisation (DP) of 70 and above. Overall, the main chain length appeared to be a dominating factor in inducing morphology transitions. Increasing the side chain size generally had a similar effect but mainly impeded any aggregation as is the case of POEGA. Interestingly, BTP conjugates still formed fibres, suggesting that the stronger intermolecular interactions can compensate partially for the steric repulsion.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3