Strategies to Design Chemocatalytic Racemization of Tertiary Alcohols: State of the Art & Utilization for Dynamic Kinetic Resolution

Author:

Gröger Harald12ORCID,Horino Satoshi2,Kanomata Kyohei2,Akai Shuji2

Affiliation:

1. Chair of Industrial Organic Chemistry and Biotechnology Faculty of Chemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany

2. Graduate School of Pharmaceutical Sciences Osaka University 1–6, Yamadaoka, Suita Osaka 565-0871 Japan

Abstract

AbstractThe synthesis of enantiomerically pure tertiary alcohols is an important issue in organic synthesis of a range of pharmaceuticals including molecules such as the anti‐HIV drug Efavirenz. A conceptually elegant approach to such enantiomers is the dynamic kinetic resolution of racemic tertiary alcohols, which, however, requires efficient racemization strategies. The racemization of tertiary alcohols is particularly challenging due to various side reactions that can occur because of their high tendency for elimination reactions. In the last few years, several complementary catalytic concepts for racemization of tertiary alcohols have been developed, characterized by efficient racemization and suppression of unwanted side‐reactions. Besides resins bearing sulfonic acid moieties and a combination of boronic acid and oxalic acid as heterogeneous and homogeneous Brønsted‐acids, respectively, immobilized oxovanadium and piperidine turned out to be useful catalysts. The latter two catalysts, which have already been applied to different types of substrates, also have proven good compatibility with lipase, thus leading to the first two examples of chemoenzymatic dynamic kinetic resolution of tertiary alcohols. In this review, the difficulties in racemizing tertiary alcohols are specifically described, and the recently developed complementary concepts to overcome these hurdles are summarized.

Funder

Deutsche Forschungsgemeinschaft

Japan Agency for Medical Research and Development

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3