High Pressure Promotes Binding of the Allosteric Inhibitor Zn2+‐Cyclen in Crystals of Activated H‐Ras

Author:

Girard Eric1ORCID,Lopes Pedro2,Spoerner Michael2ORCID,Dhaussy Anne‐Claire3ORCID,Prangé Thierry4ORCID,Kalbitzer Hans Robert2ORCID,Colloc'h Nathalie5ORCID

Affiliation:

1. CEA CNRS IBS Univ. Grenoble Alpes Grenoble France

2. Institute for Biophysics and Physical Biochemistry University of Regensburg Regensburg Germany

3. Ensicaen CNRS CRISTMAT Université de Caen Normandie Caen France

4. CiTCoM CNRS Faculté de Pharmacie Université de Paris-Cité Paris France

5. ISTCT UMR6030 Centre Cyceron CNRS - Université de Caen Normandie – Normandie Université Caen France

Abstract

AbstractIn this work, we experimentally investigate the potency of high pressure to drive a protein toward an excited state where an inhibitor targeted for this state can bind. Ras proteins are small GTPases cycling between active GTP‐bound and inactive GDP‐bound states. Various states of GTP‐bound Ras in active conformation coexist in solution, amongst them, state 2 which binds to effectors, and state 1, weakly populated at ambient conditions, which has a low affinity for effectors. Zn2+‐cyclen is an allosteric inhibitor of Ras protein, designed to bind specifically to the state 1. In H‐Ras(wt).Mg2+.GppNHp crystals soaked with Zn2+‐cyclen, no binding could be observed, as expected in the state 2 conformation which is the dominant state at ambient pressure. Interestingly, Zn2+‐cyclen binding is observed at 500 MPa pressure, close to the nucleotide, in Ras protein that is driven by pressure to a state 1 conformer. The unknown binding mode of Zn2+‐cyclen to H‐Ras can thus be fully characterized in atomic details. As a more general conjunction from our study, high pressure x‐ray crystallography turns out to be a powerful method to induce transitions allowing drug binding in proteins that are in low‐populated conformations at ambient conditions, enabling the design of specific inhibitors.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3