Precise Control of Dissipative Self‐assembly by Light and Electricity

Author:

Chen Chunfeng1,Guan Zhibin12345ORCID

Affiliation:

1. Department of Chemistry University of California Irvine Irvine California 92697 United States

2. Center for Complex and Active Materials University of California, Irvine Irvine California 92697 United States

3. Department of Biomedical Engineering University of California, Irvine Irvine California 92697 United States

4. Department of Chemical and Biomolecular Engineering University of California, Irvine Irvine California 92697 United States

5. Department of Materials Science and Engineering University of California, Irvine Irvine California 92697 United States

Abstract

AbstractNature‐inspired synthetic dissipative self‐assemblies have attracted much attention recently. However, it remains a major challenge to achieve precise control over dissipative supramolecular assembly structures and functions of self‐contained systems. Here we combine light and electricity as two clean, and spatiotemporally addressable fuels to provide precise control over the morphology for dissipative self‐assembly of a perylene bisimide glycine (PBIg) building block in a self‐contained solution. In this design, electrochemical oxidation provides the positive fuel to activate PBIg self‐assembly while photoreduction supplies the negative fuel to deactivate the system for disassembly. Through programming the two counteracting fuels, we demonstrated the control of PBIg self‐assembly into a variety of assembly morphologies in a self‐contained system. In addition, by exerting light and electrical dual fuels simultaneously, we could create an active homeostasis exhibiting dynamic instability, leading to morphological change to asymmetric assemblies with curvatures. Such precise control over self‐assembly of self‐contained systems may find future applications in programming complex active materials as well as formulating pharmaceutical reagents with desired morphologies.

Funder

U.S. Department of Energy

National Science Foundation

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3