Vanol‐Supported Lanthanide Complexes for Strong Circularly Polarized Luminescence at 1550 nm

Author:

Adewuyi Joseph A.1,Schley Nathan D.2,Ung Gaël1ORCID

Affiliation:

1. Department of Chemistry University of Connecticut Storrs Connecticut 06269 USA

2. Department of Chemistry Vanderbilt University Nashville Tennessee 37235 USA

Abstract

AbstractStrong circularly polarized luminescence (CPL) at 1550 nm is reported for lanthanide complexes supported by Vanol; these are the first examples of coordination of Vanol to lanthanides. A change in the ligand design from a 1,1’‐bi‐2‐naphthol (in Binol) to a 2,2’‐bi‐1‐naphthol (in Vanol) results in significantly improved dissymmetry factors for (Vanol)3ErNa3 (|glum|=0.64) at 1550 nm. This is among the highest reported dissymmetry factors to date in the telecom C‐band region, and among the highest for any lanthanide complexes. Comparative solid‐state structural analysis of (Vanol)3ErNa3 and (Binol)3ErNa3 suggests that a less distorted geometry around the metal center is in part responsible for the high chiroptical metrics of (Vanol)3ErNa3. This phenomenon was further evidenced in the analogous ytterbium complex (Vanol)3YbNa3 that also exhibit a significantly improved dissymmetry factor (|glum|=0.21). This confirms and generalizes the same observation that was made in other visibly emitting, six‐coordinate lanthanide complexes. Due to their strong CPL at 1550 nm, the reported complexes are potential candidates for applications in quantum communication technologies. More importantly, our structure‐CPL activity relationship study provides guidance towards the generation of even better near‐infrared CPL emitters.

Funder

Division of Chemistry

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3