Selective Transition Enhancement in a g‐Engineered Diradical

Author:

Komeda Joe1ORCID,Boudalis Athanassios K.23ORCID,Montenegro‐Pohlhammer Nicolas4ORCID,Antheaume Cyril3ORCID,Mizuno Asato5ORCID,Turek Philippe2ORCID,Ruben Mario136ORCID

Affiliation:

1. Institute of Nanotechnology (INT) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany

2. Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra) Université de Strasbourg 4 rue Blaise Pascal, CS 90032 F-67081 Strasbourg France

3. Centre Européen de Sciences Quantiques (CESQ) within the Institut de Science et d'Ingénierie Suparamolaiculaires – ISIS 8 allée Gaspard Monge, BP 70028 F-67083 Strasbourg Cedex France

4. Centro Integrativo de Biología y Química Aplicada (CIBQA) Universidad Bernardo O'Higgins General Gana 1702 Santiago 8370854 Chile

5. Division of Chemistry Department of Materials Engineering Science Graduate School of Engineering Science Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan

6. Institute of Quantum Materials and Technologies (IQMT) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany

Abstract

AbstractA diradical with engineered g‐asymmetry was synthesized by grafting a nitroxide radical onto the [Y(Pc)2]⋅ radical platform. Various spectroscopic techniques and computational studies revealed that the electronic structures of the two spin systems remained minimally affected within the diradical system. Fluid‐solution Electron Paramagnetic Resonance (EPR) experiments revealed a weak exchange coupling with |J| ~ 0.014 cm−1, subsequently rationalized by CAS‐SCF calculations. Frozen solution continuous‐wave (CW) EPR experiments showed a complicated and power‐dependent spectrum that eluded analysis using the point‐dipole model. Pulse EPR manipulations with varying microwave powers, or under varying magnetic fields, demonstrated that different resonances could be selectively enhanced or suppressed, based on their different tipping angles. In particular, Field‐Swept Echo‐Detected (FSED) spectra revealed absorptions of MW power‐dependent intensities, while Field‐Swept Spin Nutation (FSSN) experiments revealed two distinct Rabi frequencies. This study introduces a methodology to synthesize and characterize g‐asymmetric two‐spin systems, of interest in the implementation of spin‐based CNOT gates.

Funder

Deutsche Forschungsgemeinschaft

Agencia Nacional de Investigación y Desarrollo

Japan Society for the Promotion of Science London

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3