Electrocatalytic Hydrogen Evolution using a Nickel‐based Calixpyrrole Complex: Controlling the Secondary Coordination Sphere on an Electrode Surface

Author:

Trowbridge Logan1,Averkiev Boris1,Sues Peter E.1ORCID

Affiliation:

1. Department of Chemistry Kansas State University 1212 Mid-Campus Drive North Manhattan Kansas 66503 USA

Abstract

AbstractIncorporating design elements from homogeneous catalysts to construct well defined active sites on electrode surfaces is a promising approach for developing next generation electrocatalysts for energy conversion reactions. Furthermore, if functionalities that control the electrode microenvironment could be integrated into these active sites it would be particularly appealing. In this context, a square planar nickel calixpyrrole complex, Ni(DPMDA) (DPMDA=2,2′‐((diphenylmethylene)bis(1H‐pyrrole‐5,2‐diyl))bis(methaneylylidene))bis(azaneylylidene))dianiline) with pendant amine groups is reported that forms a heterogeneous hydrogen evolution catalyst using anilinium tetrafluoroborate as the proton source. The supported Ni(DPMDA) catalyst was surprisingly stable and displayed fast reaction kinetics with turnover frequencies (TOF) up to 25,900 s−1 or 366,000 s−1 cm−2. Kinetic isotope effect (KIE) studies revealed a KIE of 5.7, and this data, combined with Tafel slope analysis, suggested that a proton‐coupled electron transfer (PCET) process involving the pendant amine groups was rate‐limiting. While evidence of an outer‐sphere reduction of the Ni(DPMDA) catalyst was observed, it is hypothesized that the control over the secondary coordination sphere provided by the pendant amines facilitated such high TOFs and enabled the PCET mechanism. The results reported herein provide insight into heterogeneous catalyst design and approaches for controlling the secondary coordination sphere on electrode surfaces.

Funder

Division of Chemistry

Johnson Cancer Research Center, Kansas State University

National Institute of General Medical Sciences

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3