Initial Quenching Efficiency Determines Light‐Driven H2 Evolution of [Mo3S13]2− in Lipid Bilayers

Author:

Abbas Amir1,Oswald Eva2,Romer Jan2,Lenzer Anja1,Heiland Magdalena1,Streb Carsten13,Kranz Christine2,Pannwitz Andrea1ORCID

Affiliation:

1. Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany

2. Institute of Analytical and Bioanalytical Chemistry Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany

3. Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany

Abstract

AbstractNature uses reactive components embedded in biological membranes to perform light‐driven photosynthesis. Here, a model artificial photosynthetic system for light‐driven hydrogen (H2) evolution is reported. The system is based on liposomes where amphiphilic ruthenium trisbipyridine based photosensitizer (RuC9) and the H2 evolution reaction (HER) catalyst [Mo3S13]2− are embedded in biomimetic phospholipid membranes. When DMPC was used as the main lipid of these light‐active liposomes, increased catalytic activity (TONCAT ~200) was observed compared to purely aqueous conditions. Although all tested lipid matrixes, including DMPC, DOPG, DPPC and DOPG liposomes provided similar liposomal structures according to TEM analysis, only DMPC yielded high H2 amounts. In situ scanning electrochemical microscopy (SECM) measurements using Pd microsensors revealed an induction period of around 26 minutes prior to H2 evolution, indicating an activation mechanism which might be induced by the fluid‐gel phase transition of DMPC at room temperature. Stern‐Volmer‐type quenching studies revealed that electron transfer dynamics from the excited state photosensitizer are most efficient in the DMPC lipid environment giving insight for design of artificial photosynthetic systems using lipid bilayer membranes.

Funder

Vector Stiftung

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3