Affiliation:
1. School of Natural and Environmental Sciences – Chemistry Newcastle University Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
2. BiBerChem Research Ltd. The Biosphere Draymans Way, Newcastle Helix Newcastle upon Tyne NE4 5BX UK
Abstract
AbstractVinyl ethers are valuable synthetic intermediates which are also found as natural products, including aflatoxins, rifamycins and plasmalogens. The latter are ubiquitous phospholipids in human cells and contain a vinyl ether moiety with specifically Z configuration. Although numerous methods are available for synthesis of vinyl ethers, there is a lack of methods for obtaining Z isomers of molecules of the type RCH=CHOR’ that are applicable to plasmalogens. A variant of the Peterson reaction is described that generates such molecules with very high stereoselectivity (Z/E ratio: 99 : 1). (R,R)/(S,S)‐1‐alkoxy‐2‐hydroxyalkylsilanes were synthesized from 1‐trimethylsilylalkynes by a sequence of reduction with di‐isobutylaluminium hydride to a (Z)‐1‐trimethylsilylalkene, epoxidation of the alkene to a 2‐trimethylsilyl‐3‐substituted epoxide and regioselective, boron‐trifluoride catalyzed ring‐opening of the epoxide by reaction with an alcohol. Conversion of the (R,R)/(S,S)‐1‐alkoxy‐2‐hydroxyalkylsilanes to vinyl ethers (RCH=CHOR’) was achieved under basic conditions as in a standard Peterson reaction. However, near exclusive formation of a Z vinyl ether was only achieved when the reaction was performed using potassium hydride in the non‐polar solvent α,α,α‐trifluorotoluene, more polar solvents giving increasing amounts of the E isomer. The sequence described embraces a variety of substituents and precursors, proceeds in overall high yield and is readily scalable.
Subject
General Chemistry,Catalysis,Organic Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献