Breaking Radial Dipole Symmetry in Planar Macrocycles Modulates Edge‐to‐Edge Packing and Disrupts Cofacial Stacking

Author:

Li Yan1,Castillo Henry D.1,Dobscha James R.1,Morgan Amanda R.1ORCID,Tait Steven L.1,Flood Amar H.1ORCID

Affiliation:

1. Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington IN 47405 USA

Abstract

AbstractDipolar interactions are ever‐present in supramolecular architectures, though their impact is typically revealed by making dipoles stronger. While it is also possible to assess the role of dipoles by altering their orientations by using synthetic design, doing so without altering the molecular shape is not straightforward. We have now done this by flipping one triazole unit in a rigid macrocycle, tricarb. The macrocycle is composed of three carbazoles (2 Debye) and three triazoles (5 Debye) defining an array of dipoles aligned radially but organized alternately in and out. These dipoles are believed to dictate edge‐to‐edge tiling and face‐to‐face stacking. We modified our synthesis to prepare isosteric macrocycles with the orientation of one triazole dipole rotated 40°. The new dipole orientation guides edge‐to‐edge contacts to reorder the stability of two surface‐bound 2D polymorphs. The impact on dipole‐enhanced π stacking, however, was unexpected. Our stacking model identified an unchanged set of short‐range (3.4 Å) anti‐parallel dipole contacts. Despite this situation, the reduction in self‐association was attributed to long‐range (~6.4 Å) dipolar repulsions between π‐stacked macrocycles. This work highlights our ability to control the build‐up and symmetry of macrocyclic skeletons by synthetic design, and the work needed to further our understanding of how dipoles control self‐assembly.

Funder

Office of Science

National Science Foundation

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3