Effects of the Magnetic Orientation of M13 Bacteriophage on Phage Display Selection

Author:

Wang Shuxu12,Uchida Noriyuki1,Ueno Kento12,Matsubara Teruhiko3,Sato Toshinori3,Aida Takuzo12,Ishida Yasuhiro1ORCID

Affiliation:

1. RIKEN Center for Emergent Matter Science 2-1 Hirosawa, Wako Saitama 351-0198 Japan

2. Department of Chemistry and Biotechnology School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan

3. Department of Biosciences and Informatics Keio University 3-14-1 Hiyoshi, Kouhoku-ku Yokohama 223-8522 Japan

Abstract

AbstractAlthough phage display selection using a library of M13 bacteriophage has become a powerful tool for finding peptides that bind to target materials on demand, a remaining concern of this method is the interference by the M13 main body, which is a huge filament >103 times larger than the displayed peptide, and therefore would nonspecifically adhere to the target or sterically inhibit the binding of the displayed peptide. Meanwhile, filamentous phages are known to be orientable by an external magnetic field. If M13 filaments are magnetically oriented during the library selection, their angular arrangement relative to the target surface would be changed, being expected to control the interference by the M13 main body. This study reports that the magnetic orientation of M13 filaments vertical to the target surface significantly affects the selection. When the target surface was affinitive to the M13 main body, this orientation notably suppressed the nonspecific adhesion. Furthermore, when the target surface was less affinitive to the M13 main body and intrinsically free from the nonspecific adhesion, this orientation drastically changed the population of M13 clones obtained through library selection. The method of using no chemicals but only a physical stimulus is simple, clean, and expected to expand the scope of phage display selection.

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3