Synthesis and Properties of Fluorenone‐Containing Cycloparaphenylenes and Their Late‐Stage Transformation

Author:

Bliksted Roug Pedersen Viktor1ORCID,Price Tavis W.2ORCID,Kofod Nicolaj1ORCID,Zakharov Lev N.3ORCID,Laursen Bo W.1ORCID,Jasti Ramesh2ORCID,Brøndsted Nielsen Mogens1ORCID

Affiliation:

1. Department of Chemistry University of Copenhagen Universitetsparken 5 2100 Copenhagen Ø Denmark

2. Department of Chemistry and Biochemistry Materials Science Institute and Knight Campus for Accelerating Scientific Impact University of Oregon Eugene OR 97403 USA

3. CAMCOR–Center for Advanced Materials Characterization in Oregon University of Oregon Eugene Oregon 97403 USA

Abstract

AbstractCycloparaphenylenes (CPPs) are the smallest possible armchair carbon nanotubes, the properties of which strongly depend on their ring size. They can be further tuned by either peripheral functionalization or by replacing phenylene rings for other aromatic units. Here we show how four novel donor–acceptor chromophores were obtained by incorporating fluorenone or 2‐(9H‐fluoren‐9‐ylidene)malononitrile into the loops of two differently sized CPPs. Synthetically, we managed to perform late‐stage functionalization of the fluorenone‐based rings by high‐yielding Knoevenagel condensations. The structures were confirmed by X‐ray crystallographic analyses, which revealed that replacing a phenylene for a fused‐ring‐system acceptor introduces additional strain. The donor–acceptor characters of the CPPs were supported by absorption and fluorescence spectroscopic studies, electrochemical studies (displaying the CPPs as multi‐redox systems undergoing reversible or quasi‐reversible redox events), as well as by computations. The oligophenylene parts were found to comprise the electron donor units of the macrocycles and the fluorenone parts the acceptor units.

Funder

Novo Nordisk Fonden

National Science Foundation

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3