Zinc Tetrapyrrole Coordinated to Imidazole Functionalized Tetracyanobutadiene or Cyclohexa‐2,5‐diene‐1,4‐diylidene‐expanded‐tetracyanobutadiene Conjugates: Dark vs. Light‐Induced Electron Transfer

Author:

Guragain Manan1,Pinjari Dilip2,Misra Rajneesh2,D'Souza Francis1ORCID

Affiliation:

1. Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA

2. Department of Chemistry Indian Institute of Technology Indore 453552 India

Abstract

AbstractUsing the popular metal‐ligand axial coordination self‐assembly approach, donor‐acceptor conjugates have been constructed using zinc tetrapyrroles (porphyrin (ZnP), phthalocyanine (ZnPc), and naphthalocyanine (ZnNc)) as electron donors and imidazole functionalized tetracyanobutadiene (Im‐TCBD) and cyclohexa‐2,5‐diene‐1,4‐diylidene‐expanded‐tetracyanobutadiene (Im‐DCNQ) as electron acceptors. The newly formed donor‐acceptor conjugates were fully characterized by a suite of physicochemical methods, including absorption and emission, electrochemistry, and computational methods. The measured binding constants for the 1 : 1 complexes were in the order of 104–105 M−1 in o‐dichlorobenzene. Free‐energy calculations and the energy level diagrams revealed the high exergonicity for the excited state electron transfer reactions. However, in the case of the ZnNc:Im‐DCNQ complex, owing to the facile oxidation of ZnNc and facile reduction of Im‐DCNQ, slow electron transfer was witnessed in the dark without the aid of light. Systematic transient pump‐probe studies were performed to secure evidence of excited state charge separation and gather their kinetic parameters. The rate of charge separation was as high as 1011 s−1 suggesting efficient processes. These findings show that the present self‐assembly approach could be utilized to build donor‐acceptor constructs with powerful electron acceptors, TCBD and DCNQ, to witness ground and excited state charge transfer, fundamental events required in energy harvesting, and building optoelectronic devices.

Funder

Directorate for Mathematical and Physical Sciences

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3