Pillar[5]arene‐Based Ion‐Pair Recognition for Encapsulation of a Stilbazolium‐Type Dye with Enhanced Photophysical Properties and Nonlinear Optical Activity

Author:

Li Ming12ORCID,Yang Yuting3,Liu Rui12,Wang Yanfang12,Shao Li4,Hua Bin12,Liu Xiaofeng3,Huang Feihe12ORCID

Affiliation:

1. Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310058 P. R. China

2. Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials ZJU-Hangzhou Global Scientific and Technological Innovation Center Zhejiang University Hangzhou 311215 P. R. China

3. School of Materials Science and Engineering Zhejiang University Hangzhou 310027 P. R. China

4. Department of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 P. R. China

Abstract

AbstractConstructing organic composite materials through molecular recognition has emerged as an important theme in materials science. Here we report an ion‐pair recognition system involving the use of a propoxylated pillar[5]arene (PrP5) to modulate the solid‐state photophysical properties of dye trans‐4’‐(dimethylamino)‐N‐methyl‐4‐stilbazolium hexafluorophosphate (DMASP). Single crystal X‐ray diffraction analysis reveals that the dye guest DMASP is encapsulated by PrP5 to form a 2 : 1 host−guest complex 2PrP5⸧DMASP in the crystalline state. The macrocyclic skeleton of PrP5 imposes restrictions on the intramolecular motions of the dye guest, leading to a significant enhancement of its fluorescence emission. Additionally, within the 2PrP5⸧DMASP complex crystal structure, DMASP molecules are found to display two possible opposite orientations in the one‐dimensional channels formed by PrP5 molecules. This arrangement is believed to alter the overall solid‐state packing structure of DMASP, thereby activating its nonlinear optical activity. This work not only reports a novel ion‐pair molecular recognition system based on pillararenes but also provides valuable insights into the modulation of the crystalline state photophysical properties of organic dyes via cocrystal engineering.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3