Highly Ordered Co‐Assembly of Bisurea Functionalized Molecular Switches at the Solid‐Liquid Interface

Author:

Stähler Cosima1ORCID,Reynaerts Robby2ORCID,Rinkovec Tamara2ORCID,Verstraete Lander23ORCID,Heideman G. Henrieke1,Minoia Andrea4ORCID,Harvey Jeremy N.2ORCID,Mali Kunal S.2ORCID,De Feyter Steven2ORCID,Feringa Ben L.1ORCID

Affiliation:

1. Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands

2. Division of Molecular Imaging and Photonics Department of Chemistry KU Leuven Celestijnenlaan 200F B-3001 Leuven Belgium

3. imec Kapeldreef 75 3001 Leuven Belgium

4. Laboratory for Chemistry of Novel Materials Materials Research Institute University of Mons Place du Parc 20 7000 Mons Belgium

Abstract

AbstractImmobilization of stimulus‐responsive systems on solid surfaces is beneficial for controlled signal transmission and adaptive behavior while allowing the characterization of the functional interface with high sensitivity and high spatial resolution. Positioning of the stimuli‐responsive units with nanometer‐scale precision across the adaptive surface remains one of the bottlenecks in the extraction of cooperative function. Nanoscale organization, cooperativity, and amplification remain key challenges in bridging the molecular and the macroscopic worlds. Here we report on the design, synthesis, and scanning tunneling microscopy (STM) characterization of overcrowded alkene photoswitches merged in self‐assembled networks physisorbed at the solid‐liquid interface. A detailed anchoring strategy that ensures appropriate orientation of the switches with respect to the solid surface through the use of bis‐urea groups is presented. We implement a co‐assembly strategy that enables the merging of the photoswitches within physisorbed monolayers of structurally similar ‘spacer’ molecules. The self‐assembly of the individual components and the co‐assemblies was examined in detail using (sub)molecular resolution STM which confirms the robust immobilization and controlled orientation of the photoswitches within the spacer monolayers. The experimental STM data is supported by detailed molecular mechanics (MM) simulations. Different designs of the switches and the spacers were investigated which allowed us to formulate guidelines that enable the precise organization of the photoswitches in crystalline physisorbed self‐assembled molecular networks.

Funder

H2020 European Research Council

Ministerie van Onderwijs, Cultuur en Wetenschap

Fonds Wetenschappelijk Onderzoek

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3